Dr Mike Wheeler

mike wheeler

Principal Lecturer in Biology

School of Science and the Environment

Biological Sciences

Contact Details

email: m.wheeler@worc.ac.uk
tel: 01905 54 2414

Dr Mike Wheeler is a Principal Lecturer in Biological Sciences. Although his research background is in plant molecular genetics, Mike also researched in Cancer Sciences as a Postdoctoral Research Fellow at the University of Birmingham and prior to reading for his degree in Genetics was a qualified nurse for 7 years where he practiced on a General Surgery ward in Dudley.

Mike joined the 51ÊÓƵ in 2010 after researching in the area of plant molecular genetics. Mike developed a strong background in the biology of cell signalling in plants, with specific research into the mechanisms of self-incompatibility in poppy and the control of polarity in pollen tubes of tobacco. He is currently investigating the function of a large family of secreted proteins likely to be involved in cell-cell communication in the model plants, Arabidopsis thaliana and Physcomitrella patens.

In addition to his research into plant molecular genetics Mike is also developing means of using molecular biology to solve problems in conservation biology which is a longstanding passion of his. In this area Mike is currently developing eDNA (environmental DNA) techniques to assess the effect of invasive and non-native species on species of conservation concern. Mike is also concerned with projects to help people engage with nature as a means to combatting poor mental health. He leads bird walks around the campus and is involved with projects aimed at increasing birdlife around campus to enrich the environment. He is also currently involved in a scheme to improve winter feeding for farmland birds at Lakeside campus in partnership with the local RSPB group.

Mike is a member of the Sustainable Environments Research Group.

Key Projects

  • The function of SPH proteins in pollination in Arabidopsis thaliana
  • The evolution of signalling proteins in the moss, Physcomitrella patens

Qualifications

  • Postgraduate Cert. in Learning and Teaching in Higher Education 51ÊÓƵ 2012
  • PhD University of Birmingham 2001
  • BSc Biological Sciences (Genetics) University of Birmingham 1997

Roles

  • Learning and Teaching Co-ordinator for the School of Science and the Environment
  • School Lead for Outreach and School and College Liaison
  • Member of the University Learning, Teaching and Student Experience Committee

Teaching Interests

Mike teaches on a variety of modules in Biological Sciences at the 51ÊÓƵ, including the following degree courses BSc Biology, BSc Biochemistry, BSc Animal Biology, BSc Biomedical ScienceBSc Forensic and Applied Biology and BSc Human Biology.

Mike is the lead for the following undergraduate modules:

  • Level 4 (Year 1)
    BIOL1007 Introduction to Evolution and Genetics
  • Level 5 (Year 2)
    BIOL2004 Molecular and Cellular Biology
    BIOL2005 Molecular Genetics and Conservation
    BIOL2006 Molecular Genetics
  • Level 6 (Year 3)
    BIOL3009 Genomics and Bioinformatics

In addition to Mike's undergraduate teaching interests he has been engaged in several learning and teaching projects. These include:

  • A project with Gill Reynolds (a former University of Worcester MRes student and current PhD student at Montana State University) on engaging A level students with Bioinformatics where Gill has produced an ebook with guidance on constructing phylogenetic trees using DNA sequence data to enhance teaching of evolution. ·
  • Several Theatre in Education (TiE) projects (with Dr Susanne Prankel and Alison Reeves) aimed at enhancing participation in Science at University level by producing a science-themed play toured to schools and colleges.
  • A review of Research Inspired Teaching across the 51ÊÓƵ with Professor Maggie Andrews.
  • Mike has been an External Examiner at Shrewsbury University Centre for the Biological Sciences programme and at the University of Birmingham for the MRes in Molecular and Cellular Biology.
  • As part of his role as School Lead for School and College Liaison, Mike has constructed a Taster Day and outreach programme that encourages school and college students to study science at degree level.

Conference presentations

Silvester E, Elliot J and Wheeler M. (2019) Constructing a new practical in Biosciences – a staff/student collaborative approach. 51ÊÓƵ Learning & Teaching Conference

Wheeler M and Woolard G. (2017) 'Trickle down teaching' informing The Biosciences Curriculum with Bioinformatics. Beyond Boundaries - 51ÊÓƵ Learning & Teaching Conference

Sherrard G, Woolard G and Wheeler M. (2016) Investigating the Function of a Small Secreted Protein Family in Physcomitrella patens. In: MOSS 2016 Conference, 2nd - 5th September 2016, University of Leeds

Miller R, Webb J and Wheeler M. (2014). Frankenstein’s Creatures; Young adult fiction, genetic Engineering and Issues of Identity. (poster – HEA conference, University of Manchester)

Wheeler, MJ, Prankel, S, Swift, E, Fisher, J and Reeves, A (2014). All the Labs a stage: the use of drama to promote engagement in Higher Education Science. (poster and presentation SEB, University of Manchester)

Wheeler, MJ (2009).Secreted protein ligands in the Arabidopsis flower. Biochemical Society focused meeting - cell-cell communication in plant reproduction. (supplement to abstract book)

Poulter NS, Wheeler, MJ, de Graaf BHJ, Perry RM, Vatovec S, Franklin FCH and Franklin-Tong VE (2009). Self-incompatibility in Papaver: identification of the pollen S-determinant. Biochemical Society focused meeting - cell-cell communication in plant reproduction. (p. 3 of abstract book)

Wheeler, MJ, de Graaf BHJ, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Franklin FCH and Franklin-Tong VE (2008). The pollen self-incompatibility determinant. Frontiers of Sexual Plant Reproduction III, Marriot University Park, Tuscon, Arizona (p. 60 of abstract book see online)

BJH de Graaf, NE Hadiosif, MJ Wheeler, NS Poulter, RM Perry, K Osman VE Franklin-Tong & FCH Franklin. (2007) Identification and functional analysis of the pollen determinant of self-Incompatibility in Papaver rhoeas. Keystone Meeting, Idaho, USA.(co-author)

Wheeler MJ, Berditchevski F, Hotchin N (2007) Interaction of syntenin-1 with tetraspanins in the plasma membrane. CRUK Midlands Conference, Hilton-Metropole, Birmingham

Wheeler MJ, Ride JP, Holub E, Franklin-Tong VE, Franklin FCH. (2005) The SPH family A family of novel protein ligands implicated in the Arabidopsis pathogen response. Keystone Symposium: Plant Cell Signalling In Vivo and Omics Approaches, Santa Fe, New Mexico

Wheeler, MJ, Davies, EM, Ride, JP and Franklin FCH. (2003). SPH1 a novel class of protein signal molecule from Arabidopsis is implicated in vascular tissue development. Plant GEMs/GARNet 2003 p.138.

Wheeler, MJ and Franklin, FCH. (2002). Dissection of the SI reaction in Papaver rhoeas. Comparative Biochemistry and Physiology. 132/A. S130-S131.

Wheeler, MJ, Jordan, ND, Franklin-Tong, VE and Franklin, FCH. (2000). Self-incompatibility in Papaver rhoeas The molecular basis of pollen stigma interactions. 18th International Congress of Biochemistry and Molecular Biology. p.198.

Wheeler, MJ and Franklin, FCH. (2000). Pollen-pistil interactions in the self-incompatibility response of Papaver rhoeas. SEB Annual Meeting, University of Exeter. Journal of Experimental Botany. 51: March supplement: p.28.

Publications

Cherry, AL, Wheeler, MJ, Mathisova, K and Di Miceli, M (2024) In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Frontiers in Neuroinformatics. 18 1-20.

Rajasekar KV, Ji S, Coulthard RJ, Ride JP, Reynolds GL, Winn PJ, Wheeler MJ, Hyde EI and Smith LJ (2019) Structure of SPH (self-incompatibility protein homologue) proteins: a widespread family of small, highly stable, secreted proteins. Biochemical Journal 476(5) 809-826

Hurley K, Wharton L, Wheeler M, Skjøth C, Niles C and Hanson M. (2019) Car Cabin Filters as Sampling Devices to Study Bioaerosols Using eDNA and Microbiological Methods. Aerobiologia. 35(2). 215-225

SH Prankel, M Wheeler, L Swift, J Amos (2012). DVD ‘A Life worth Living’ on a Theatre in Education play on Animal Welfare and Ethics

Poulter NS, Wheeler, MJ, Bosch M and Franklin-Tong VE (2010) Self-incompatibility in Papaver: identification of the pollen S-determinant PrpS. Biochemical Society Transactions. 38 588-592

Wheeler, MJ, Vatovec, S and Franklin-Tong, VE. (2010) The pollen S-determinant in Papaver: comparisons with known plant receptors and protein ligand partners. Journal of Experimental Botany. 61 2015-2025

Wheeler, MJ, de Graaf, BHJ, Hadjiosif, N, Perry, RM, Osman K, Poulter NS, Vatovec S, Harper A, Franklin, FCH and Franklin-Tong, VE. (2009) Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature. 459 992-995

Wheeler, MJ & Franklin-Tong, VE. (2007). Specifying self-recognition: peptides lead the way. New Phytologist. 175 597-599

de Graaf BHJ*, Rudd JJ*, Wheeler MJ*, Bell EM, Osman K, Perry, R, Franklin FCH and Franklin-Tong VE. (2006) Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature. 444 490-493 
*joint first author.

Thomas S, Osman K, de Graaf BHJ, Shevchenko G, Wheeler MJ, Franklin FCH, Franklin-Tong VE (2003) Investigating mechanisms involved in the self-incompatibility response in Papaver rhoeas. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 358 1033-1036

Wheeler MJ, Armstrong SA, Franklin-Tong VE and Franklin FCH. (2003). Genomic organisation of the Papaver rhoeas self incompatibility S1 locus. Journal of Experimental Botany. 54: 131-139

Wheeler MJ and Franklin FCH. (2002) How plants see themselves - self-incompatibility in flowering plants. The Biologist. 49 (2) 68-72

Wheeler, MJ, Franklin-Tong, VE and Franklin, FCH. (2001). The molecular and genetic basis of pollen-pistil interactions. New Phytologist. 151: 565-584

Wheeler, MJ, Allan, AC, Jordan, ND, Rudd, JJ, Franklin-Tong, VE and Franklin, FCH. (1999). The intracellular events triggered by the self-incompatibility response in Papaver rhoeas. Protoplasma. 208: 99-106

Research Interests

Plant Cell Signalling

Mike's interest in this area stems from research that he carried out for his PhD at the University of Birmingham which resulted in the isolation and characterisation of the pollen receptor that controls self-incompatibility (SI) in the field poppy, Papaver rhoeas (). The SI system in poppy is controlled by polymorphic secreted ligand proteins (PrsS) and a pollen-specific membrane receptor (PrpS). While no homologues of PrpS have been found in other plants there are known to be homologues of PrsS, the secreted ligand protein (, ). These proteins are found as a large family (84 members) in Arabidopsis thaliana and also in the model moss, Physcomitrella patens.

A current focus of Mike's research is to elucidate the function of these proteins. We know that these proteins are secreted as they each have an N-terminal signal peptide and immunogold studies suggest they localise outside of the cell (figure 2). The Arabidopsis SPH family members are mostly expressed in floral tissues with some being pollen-specific and many others ovule-specific. However one problem with this family is that they appear to contain many duplicate copies and thus are difficult to analyse using traditional gene knockout strategies. Mike is currently attempting to elucidate their function by misexpressing and overexpressing pollen-specific and ovule-specific SPH proteins in Arabidopsis.

Because of the difficulties of studying such a large family of genes Mike is also currently examining the SPH gene family in Physcomitrella patens in association with a colleague at the University of Birmingham, Dr Juliet Coates. The advantage of using Physcomitrella is that there are only 6 SPH genes and the Physcomitrella genome is also known to have less duplication of genes. Additionally this plant is amenable to targeted gene replacement by homologous recombination. Mike is currently investigating the function of these genes via a gene knockout and reporter fusion strategy. In addition, Mike is using a phage display strategy to attempt to find receptors for these proteins.

Molecular Ecology

Mike is also interested in Molecular Ecology. He has worked with several undergraduates and postgraduates in projects aiming to utilise eDNA to detect species as diverse as crayfish, water voles, marsh frogs and otters. Mike is interested in developing research relationships outside the University in this area. Mike is also currently involved in a partnership with the local RSPB group on helping farmland birds by providing winter supplementary feed. Mike has jointly supervised two MRes projects – with Dr John Dutton a project by an MRes student, Dominique Cragg, examining the effects of farmland management on Corn Buntings and with Prof. Ian Maddock, a project by an MRes student Chris Greensmith which examined the possibilities of using eDNA detection of otters in riverine systems. 

Mike is also interested in speciation in birds and the role that birdsong, plumage and genetics plays in this process.” He has recently supervised dissertation projects on the subspecies in the Cape White-eye (Zosterops virens) and bare skin colouration in tropical forest birds.